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1 It is given that

A = ( 1 −1 −2
0 2 1
0 0 −3

) .

Write down the eigenvalues ofA and find corresponding eigenvectors. [5]

2 The integralIn, wheren is a non-negative integer, is defined by

In = � 1

0
xne−x3

dx.

By considering
d
dx

(xn+1e−x3) or otherwise, show that

3I
n+3

= (n + 1)I
n
− e−1. [3]

Hence findI6 in terms of e andI0. [2]

3 Verify that if

vn = n(n + 1)(n + 2) . . . (n + m),
then

vn+1 − vn = (m + 1)(n + 1)(n + 2) . . . (n + m). [2]

Given now that

un = (n + 1)(n + 2) . . . (n + m),

find
N

∑
n=1

un in terms ofm andN. [3]

4 Prove by mathematical induction that, for all positive integersn, 103n + 13n+1 is divisible by 7. [5]

5 Show that ifa ≠ 3 then the system of equations

2x + 3y + 4� = −5,

4x + 5y − � = 5a + 15,

6x + 8y + a� = b − 2a + 21,

has a unique solution. [3]

Given thata = 3, find the value ofb for which the equations are consistent. [3]
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6 The roots of the equation

x3 + x + 1 = 0

areα, β, γ . Show that the equation whose roots are

4α + 1
α + 1

,
4β + 1
β + 1

,
4γ + 1
γ + 1

is of the form

y3 + py + q = 0,

where the numbersp andq are to be determined. [5]

Hence find the value of

(4α + 1
α + 1

)n

+ (4β + 1
β + 1

)n

+ (4γ + 1
γ + 1

)n

,

for n = 2 and forn = 3. [4]

7 The curveC has equation

r = 10 ln(1+ θ),
where 0≤ θ ≤ 1

2
π. Draw a sketch ofC. [2]

Use the substitutionw = ln(1+ θ) to show that the area of the sector bounded by the lineθ = 1
2
π and

the arc ofC joining the origin to the point whereθ = 1
2
π is

50(b2 − 2b + 2)eb − 100,

whereb = ln(1+ 1
2
π). [6]

8 Given that

2y3d2y

dx2
+ 12y3dy

dx
+ 6y2(dy

dx
)2 + 17y4 = 13e−4x

and thatv = y4, show that

d2v

dx2
+ 6

dv
dx

+ 34v = 26e−4x. [4]

Hence find the general solution fory in terms ofx. [5]

9 With O as origin, the pointsA, B, C have position vectors

i, i + j, i + j + 2k

respectively. Find a vector equation of the common perpendicular of the linesAB andOC. [6]

Show that the shortest distance between the linesAB andOC is 2
5

√
5. [2]

Find, in the formax + by + c� = d, an equation for the plane containingAB and the common
perpendicular of the linesAB andOC. [3]
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10 The curveC has equation

y = x2 + λ sin(x + y),
whereλ is a constant, and passes through the pointA (1

4
π, 1

4
π). Show thatC has no tangent which is

parallel to they-axis. [5]

Show that, atA,

d2y

dx2
= 2− 1

64
π(4− π)(π + 2)2. [5]

11 Prove de Moivre’s theorem for a positive integral exponent:

for all positive integersn, (cosθ + i sinθ)n = cosnθ + i sinnθ. [5]

Use de Moivre’s theorem to show that

cos 7θ = 64 cos7θ − 112 cos5θ + 56 cos3θ − 7 cosθ. [4]

Hence obtain the roots of the equation

128x7 − 224x5 + 112x3 − 14x + 1 = 0

in the form cosqπ, whereq is a rational number. [4]
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12 Answer onlyone of the following two alternatives.

EITHER

The curveC has equation

y = x2 + qx + 1
2x + 3

,

whereq is a positive constant.

(i) Obtain the equations of the asymptotes ofC. [3]

(ii) Find the value ofq for which thex-axis is a tangent toC, and sketchC in this case. [4]

(iii) SketchC for the caseq = 3, giving the exact coordinates of the points of intersection of C with
thex-axis. [3]

(iv) It is given that, for all values of the constantλ , the line

y = λx + 3
2
λ + 1

2
(q − 3)

passes through the point of intersection of the asymptotes of C. Use this result, with the diagrams
you have drawn, to show that ifλ < 1

2
then the equation

x2 + qx + 1
2x + 3

= λx + 3
2
λ + 1

2
(q − 3)

has no real solution ifq has the value found in part(ii), but has 2 real distinct solutions ifq = 3.
[4]

OR

The curveC has equation

y = x
1
2 − 1

3
x

3
2 + λ ,

whereλ > 0 and 0≤ x ≤ 3. The length ofC is denoted bys. Prove thats = 2
√

3. [4]

The area of the surface generated whenC is rotated through one revolution about thex-axis is denoted
by S. FindS in terms ofλ . [5]

They-coordinate of the centroid of the region bounded byC, the axes and the linex = 3 is denoted by

h. Given that� 3

0
y2 dx = 3

4
+ 8

√
3

5
λ + 3λ 2, show that

lim
λ→∞

S
hs

= 4π. [5]
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